HOMEWORK 5 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

SECTION 3.1: DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS 3.1.11. $y' = -\frac{2}{5}x^{-\frac{7}{5}}$

3.1.13. $V'(r) = 4\pi r^2$, which is the surface area of sphere! What a coincidence - or is it? ;)

- **3.1.20.** $f'(t) = \frac{1}{2\sqrt{t}} + \frac{1}{2t\sqrt{t}} = t^{-\frac{1}{2}} + \frac{1}{2}t^{-\frac{3}{2}}$
- **3.1.32.** $y' = e^{x+1}$

3.1.35. $y' = 4x^3 + 2e^x$, so y'(0) = 2, and so the equation of tangent line is y - 2 = 2(x - 0), i.e. y = 2x + 2 and equation of normal line is $y - 2 = -\frac{1}{2}(x - 0)$, i.e. $y = -\frac{1}{2}x + 2$ (remember that the normal line still goes through (0, 2), but has slope = the negative reciprocal of the slope of the tangent line)

3.1.49.

- (a) $v(t) = s'(t) = 3t^2 3; a(t) = v'(t) = 6t$
- (b) a(2) = 12
- (c) v(t) = 0 if t = 1 or t = -1, but t > 0 (negative time doesn't make sense), so t = 1, and a(1) = 2

3.1.54. First of all $y' = \frac{3}{2}\sqrt{x}$ and first find a point x where y'(x) = 3 (remember that two lines are parallel when their slopes are equal, and the slope of y = 1+3x is 3). So you want $\frac{3}{2}\sqrt{x} = 3$, so $\sqrt{x} = 2$, so x = 4. Now all that you need to find out is the slope of the tangent line to the curve at 4. The equation is: y - 8 = 3(x - 4) (because from the above calculation the slope is 3, and the tangent line goes through (4, f(4)) = (4, 8))

3.1.76. Ask me about that during office hours!

1. Section 3.2: The product and quotient rules

3.2.15.
$$y' = \frac{2t(t^4 - 3t^2 + 1) - t^2(4t^3 - 6t)}{(t^4 - 3t^2 + 1)^2}$$

3.2.37. $y' = (2r-2)e^r + (r^2 - 2r)e^r = (r^2 - 2)e^r$

3.2.33. $y'(x) = 2e^x + 2xe^x$, so y'(0) = 2, and so the tangent line has equation: y - 0 = 2(x - 0), i.e. y = 2x, and the normal line has equation: $y - 0 = -\frac{1}{2}(x - 0)$, i.e. $y = -\frac{1}{2}x$

Date: Wednesday, March 2nd, 2011.

3.2.41.
$$f'(x) = \frac{2x(1+x)-x^2}{(1+x)^2} = \frac{x^2+2x}{x^2+2x+1}$$
, so $f''(x) = \frac{(2x+2)(x^2+2x+1)-(x^2+2x)(2x+2)}{(x^2+2x+1)^2}$
and so $f''(1) = \frac{(2+2)(1+2+1)-(1+2)(2+2)}{(1+2+1)^2} = \frac{(4)(4)-(3)(4)}{(4)(4)} = \frac{16-12}{16} = \frac{4}{16} = \boxed{=\frac{1}{4}}$
3.2.47.

(a)
$$u'(1) = f'(1)g(1) + f(1)g'(1) = (2)(1) + (2)(-1) = \boxed{0}$$

(b) $v'(5) = \frac{f'(5)g(5) - f(5)g'(5)}{(g(5))^2} = \frac{(-\frac{1}{3})(2) - (3)(\frac{2}{3})}{4} = \frac{-\frac{2}{3} - 2}{4} = -\frac{8}{12} = \boxed{-\frac{2}{3}}$

3.2.53. (9200)(30593) + (961400)(1400) = 1,345,960,000

2. Section 3.3: Derivatives of trigonometric functions

3.3.5. $g'(t) = 3t^2 \cos(t) - t^3 \sin(t)$

3.3.13. $y' = \frac{\cos(x)x^2 - \sin(x)(2x)}{x^4}$

3.3.37. We have $\sin(\theta) = \frac{x}{10}$, so $x = 10\sin(\theta)$, so $x'(\theta) = 10\cos(\theta)$, and $x'\left(\frac{\pi}{3}\right) = 10\cos\left(\frac{\pi}{3}\right) = \frac{10}{2} = 5$

3.3.39. 3 (multiply the fraction by $\frac{3}{3}$ and use the fact that $\lim_{x\to 0} \frac{\sin(3x)}{3x} = 1$) **3.3.40.** $\frac{4}{6} = \frac{2}{3}$ (multiply the numerator by $\frac{4}{4}$ and the denominator by $\frac{6}{6}$ and use the facts that $\lim_{x\to 0} \frac{\sin(4x)}{4x} = 1$ and $\lim_{x\to 0} \frac{\sin(6x)}{6x} = 1$)